当前位置:首页 > 科技资讯 >

一文吃透AI芯片技术路线,清华尹首一教授演讲全文 : GTIC2020科技资讯

来源:天之家 发表于:2021-01-12 00:24 阅读:

导读:芯东西(ID:aichip001 ) 编辑 | 心缘 GTIC 2020全球AI芯片创新峰会刚刚在北京圆满收官!在这场全天座无虚席、全网直播观看人数逾150万次的高规格AI芯片产业峰会上,19位产学界重磅嘉宾从不同维度分享了对中国AI芯片自主创新和应用落地的观察与预判。 清华...

芯东西(ID:aichip001

编辑 | 心缘

GTIC 2020全球AI芯片创新峰会刚刚在北京圆满收官!在这场全天座无虚席、全网直播观看人数逾150万次的高规格AI芯片产业峰会上,19位产学界重磅嘉宾从不同维度分享了对中国AI芯片自主创新和应用落地的观察与预判。

清华大学微纳电子系副主任、微电子所副所长尹首一教授首登GTIC,围绕《中国AI芯片的创新之路》主题,深入浅出地探讨了AI芯片在中国的进展,并对AI芯片产业的关键技术与创新机会进行了系统的梳理与预判。

一文吃透AI芯片技术路线,清华尹首一教授演讲全文 : GTIC2020

▲清华大学微纳电子系副主任、微电子所副所长尹首一教授

在演讲期间,尹首一教授重点为大家梳理了当前AI芯片的技术路线分类,分别介绍了指令集架构处理器、数据流处理器、存内计算处理器、可重构处理器、脉冲神经网络处理器及神经形态器件等AI芯片的不同研究方向,并对AI芯片进行了阶段性回顾和展望。

他总结道,目前AI芯片仍处起步阶段,在科学研究和产业应用方面具有广阔的创新空间,而中国AI芯片产业创新正与国际同步,未来大有可为。

以下为尹首一教授演讲实录整理:

一、2025年全球AI芯片市场规模将达700亿美元

AI芯片产业发展至今已有五六个年头,现在进入攻坚阶段。大家已经达成这样一个共识,人类社会正从信息化迈向智能化,人工智能(AI)成为实现智能化的一个关键手段,而在这其中,芯片是核心基石和战略制高点。

耳熟能详的AlphaGo、自动驾驶,手机上的人脸解锁、智能拍照,无线耳机的人机交互……都离不开AI芯片的支撑。

在推动智能化发展方面,AI芯片有两个最核心的作用:一是芯片的“绝对算力”是决定智能化所能达到的最高水平的关键因素之一;二是“计算能效”是决定智能化应用范围的关键因素之一。

一文吃透AI芯片技术路线,清华尹首一教授演讲全文 : GTIC2020

从“绝对算力”来看,今年OpenAI推出的GPT-3非常火,成为今年自然语言处理中最强大的模型,这个模型有1700亿个参数,使用了一万张GPU卡进行训练。没有这样强大的算力,GPT-3无法达到目前的智能化水平,可以说“绝对算力”决定了今天智能化的水平。

芯片算力的发展速度与人工智能算法对算力的需求增长之间存在巨大的差距,通用处理器平均每两年性能翻一番,而算法模型对算力的需求大概每3.4个月就翻一番,这是AI芯片需要解决的问题。

从“计算能效”来看,今天有非常多的应用领域面临迫切的智能化需求,人工智能技术正从云端向边缘和物联网设备快速渗透。然而人工智能技术能否实用化,受限于软硬件系统的计算能效。比如,语音识别颠覆了传统的人机交互接口,如果没有低功耗高能效的AI芯片,在智能耳机等便携穿戴设备上就无法实现令人满意的用户体验。

伴随着人工智能产业的快速发展,AI芯片展现出巨大的发展潜力。据第三方机构预测,全球AI市场规模到2025年将达到6.4万亿美元,其中全球AI芯片市场规模预计在2025年将达到700亿美金,今年中国AI芯片市场规模已超过75亿人民币,未来有非常强劲的增长潜力。

二、两大维度整体梳理AI芯片分类

大家经常问:“AI芯片用在哪里?”、“AI芯片属于什么类别的产品?”在峰会现场,尹首一教授从应用场景和技术路线两个维度,概述了AI芯片尤其是中国AI芯片的发展全貌。

他认为,中国的AI芯片发展起步和国际产业基本同步。据不完全统计,今天中国在做AI芯片的企业超过100家,从地域划分来看,北京、上海、长三角、珠三角是最为活跃的区域。

从应用场景的角度做划分,AI芯片可以分成云端、边缘端两类。

云端可以进一步细分成推理应用和训练应用。推理应用是大家每天都在互联网服务中能感受到的,比如搜索引擎中的自然语言翻译、电商网站的用户推荐系统、很多地方在建的城市大脑等;而训练应用是今天所有人工智能系统开发的基矗

边缘侧的应用场景非常繁多,比如智能手机、智能音箱、安防监控、智能驾驶、无人系统等,在这些终端设备上都是推理应用。

今天AI芯片成长非常速度,从2017年到2022年,不同应用领域的AI芯片的复合增长率都在50%左右。综合来看,五年间以55%的年均复合增长率快速发展。

一文吃透AI芯片技术路线,清华尹首一教授演讲全文 : GTIC2020

从技术路线的角度,今天的AI芯片可以分成两大类。

一类是深度神经网络处理器,对今天深度学习的核心基础深度神经网络进行计算加速。

另一类是神经形态处理器,通过对人脑结构的研究,设计电路或器件来复制或模仿人脑机理,实现智能处理能力。

三、实现深度神经网络处理器的四类典型架构