当前位置:首页 > 科技资讯 >

吴恩达、李飞飞、沈向洋:2021年的人工智能会是这个样子科技资讯

来源:天之家 发表于:2021-01-11 11:16 阅读:

导读:机器之心编译 编辑:杜伟、魔王、蛋酱 2020 年伴随着很多前所未有的事,在坎坷的一年过去之后,我们将迎来怎样的新时代? 在今年的最后一天,吴恩达邀请了沈向洋、李飞飞等人工智能的顶级学者,让大牛们对 2021 年的 AI 技术发展进行了一次展望。在人才不断...

机器之心编译

编辑:杜伟、魔王、蛋酱

2020 年伴随着很多前所未有的事,在坎坷的一年过去之后,我们将迎来怎样的新时代?

在今年的最后一天,吴恩达邀请了沈向洋、李飞飞等人工智能的顶级学者,让大牛们对 2021 年的 AI 技术发展进行了一次展望。在人才不断流向业界、常规架构算力进入瓶颈期的今天,作为一名从业者应该看到什么?他们是这样说的……

吴恩达、李飞飞、沈向洋:2021年的人工智能会是这个样子

新的一年近在咫尺,吴恩达分享了自己对人工智能在接下来一年中发展的三个愿望:

缩短概念证明与生产之间的差距。尽管搭建好的模型很重要,但很多人现在也意识到,从数据管理到部署到跟踪,要想付诸实践,还需要做更多的工作。2021 年,我希望我们能更好地理解机器学习项目的完整周期,构建支持相关工作的 MLOps 工具,以及系统地搭建、生产、维护 AI 模型。

增强 AI 社区的共享价值观。在过去的十年中,Deeplearning.ai 在全球范围内的成员已经从几千人增长到了数百万,我们成功的一部分原因源于对任何想加入我们的人张开双臂。与此同时,这也会带来一些误解。因此,建立一套共同的价值观比以往任何时候都更为重要。

确保我们的工作结果公平公正。人工智能领域的偏见和公平问题已经引起了广泛讨论,在这些领域仍有许多困难和重要的工作要做,我们绝不能松懈。同时,人工智能对贫富差距的贡献受到的关注也较少。许多高科技企业似乎都对应了「赢家通吃」的那一套原则,这个世界是否正在成为财富集中于少数公司的样子?我们如何确保公平分配?

我对 2021 年人工智能及各位在其中扮演的角色感到非常乐观,期待我们共同解决这些具有挑战性的问题!

此外,来自 AI 社区的多名著名学者、企业家也分享了他们对于 2021 年的展望。

佐治亚理工学院 Ayanna Howard:训练有道德的 AI

吴恩达、李飞飞、沈向洋:2021年的人工智能会是这个样子

佐治亚理工学院交互式计算主任 Ayanna Howard

作为 AI 工程师,我们拥有设计和搭建基于技术的解决方案的工具。但许多 AI 开发者不认为解决潜在的负面影响也是自己的责任,因此我们也看到医疗服务、教育机会等方面的不平等现象。

在新的一年,我希望 AI 社区可以就如何构建有道德的 AI 达成广泛共识。

我们需要在基于其部署的背景来考虑我们的工作,并对可能造成的潜在危害负责,就像负责识别和修复代码中的错误一样。

这听起来像一场巨变,但它可能很快发生。就像新冠大流行期间,很多公司都实施了以前他们认为不可能的在家办公制度。技术的一个特征是,当头部玩家改变时,其他人就会跟随,以免失去竞争优势。只需要几个领导者设定了新的方向,整个领域也会随之变化。

斯坦福大学教授李飞飞:激活 AI 生态系统,扭转顶级人才流向业界的趋势

吴恩达、李飞飞、沈向洋:2021年的人工智能会是这个样子

美国国家工程院院士、斯坦福大学教授、人工智能著名学者李飞飞

我希望 2021 年,美国政府能够坚定承诺支持 AI 创新。

美国之所以在科技领域一直处于领先地位,是因为其创新生态系统充分利用了来自学界、政府和产业界的贡献。但是,人工智能的出现使之向业界倾斜,这很大程度上是因为用于 AI 研发的三种最重要资源算力、数据和人才,集中到了少数公司。例如,根据 AI21 Labs 论文《THE COST OF TRAINING NLP MODELS》中的数据,为了训练大规模语言模型 GPT-3,OpenAI 联合微软可能花费了价值 500 万至 1000 万美元的资源。没有一所美国大学可以进行这种规模的计算。

大数据对推动人工智能的发展同样至关重要。但如今,最丰富的数据库却掌握在大型公司的手中。缺乏足够的算力和数据阻碍了学界研究者的科研,并加速了顶级 AI 人才从学界流向私有企业。